Determine if the statement is ALWAYS or SOMETIMES or NEVER true.

1. Always - parallelograms are a subset of quadrilaterals, so every parallelogram must be a quadrilateral.
2. Always - this is a property of parallelograms, so it must always be true.
3. Never - any four sided polygon only has two diagonals. For example, ABCD has three lengths that come out of point A: AB, AC, and AD. Since AB and AD are sides to the quadrilateral, the only one that is a diagonal is AC. So, when you draw a line segment from each point to every other point in a quadrilateral, you will always get four sides and two diagonals.
4. Always - this is a parallelogram property, so it is always true for a parallelogram.
5. Never - consecutive angles of a parallelogram are supplementary (add up to 180°), so they can never be complementary (add up to 90°).
6. Never - opposite angles of a parallelogram have to be supplementary (sum to 180°), so they can never be complementary (sum to 90°).
7. Always - because squares are a subset of rhombii.
8. Sometimes - squares are a subset of rectangles, so only some rectangles are squares.
9. Sometimes - because rectangles are a subset of parallelograms.
10. Always - because rhombii are a subset of parallelograms.
11. Always - because squares are a subset of paralellograms, and this is a parallelogram property.
12. Always - because this is a rectangle property.
13. Sometimes - this is a rhombus property, so it is true only for those rectangles that are also a rhombus.
14. Always - because it is a rhombus property that all sides are congruent.
15. Sometimes - this is a rectangle property, so it will be true for any parallelogram that is a rectangle.
16. Never - parallelograms and trapezoids are mutually exclusive, so one can never be the other.
17. Sometimes - this is a rectangle property, so it is only true when the parallelogram is a rectangle.
18. Always - take $A B C D$. Since it is a parallelogram we know that $A B=C D$ and $B C=A D$. These are two corresponding sides of $\triangle A B C$ and $\triangle D A C$. Since the remaining side for both sides is $A C$, the two triangles have to be congruent by SSS Theorem.
19. Sometimes - this is a rhombus property, so it will only be true for a parallelogram when that figure is also a rhombus.
20. Sometimes - opposite angles are congruent for every parallelogram, but they can also be supplementary when the angles are 90 , which occurs when the figure is a rectangle.
21. Always - because this is a parallelogram property.
22. Sometimes - squares are a subset of rhombii, so this is true only when the rhombus is also a rectangle.
23. Always - since squares are a subset of rectangles.
24. Always - because squares are a subset of parallelograms.
25. Sometimes - because the set of rhombii and the set of rectangles are intersecting sets.
26. Sometimes - this is a rectangle property, so it is true only for those parallelograms that are a rectangle.
27. Always - because this is a rhombus property.
28. Sometimes - in a rhombus, these angles are supplementary. But, they will be congruent in those rhombii that are also a rectangle.
29. Always - because this is a parallelogram property, and every rectangle is a parallelogram.
