Integral-1

Integral - the "area" between the function and the x-axis.
"Area" above the x-axis is positive.
"Area" below the x-axis is negative.

Integration is the inverse of differentiation.

So,

$$
f^{\prime}\left(\int f(x) d x\right)=f(x)
$$

And $\int f^{\prime}(x) d x=f(x)$
(kind of)
$f(x)=x^{2}$
$g(x)=x^{2}+4$
$h(x)=x^{2}-4$
$f^{\prime}(x)=2 x$
$g^{\prime}(x)=2 x$
$h^{\prime}(x)=2 x$

Note that many functions have the same derivative. This means that conversely, the integral of one function can be many functions!

$$
\begin{array}{lr}
\int f(x) d x=F(x)+c & \text { (indefinite integral) } \\
\int_{a}^{b} f(x) d x=F(b)-F(c) & \text { (definite integral) }
\end{array}
$$

DESMOS Example:

$$
\begin{gathered}
\int_{-5}^{5} x^{2} d x=\frac{250}{3} \approx 83.3 \quad \int_{-5}^{5} 4 d x=40 \\
\int_{-5}^{5}\left(x^{2}+4\right) d x=\frac{370}{3} \approx 123.3
\end{gathered}
$$

Note: this implies that $\int(f(x)+g(x)) d x=\int f(x) d x+\int g(x) d x$

Integral-1

Determine the indefinite integral for each integral expression.

1. $\int 12 x d x$
2. $\int x^{2} d x$
3. $\int\left(x^{2}+3 x+2\right) d x$
4. $\int\left(x^{2}+1\right) d x$
5. $\int 8 x^{-4} d x$
6. $\int(x+1) d x$
7. $\int(9-5 x) d x$
8. $\int\left(x^{5}+3 x+2\right) d x$
9. $\int 18 x^{-4} d x$
10. $\int x^{-\frac{9}{5}} d x$

Answer Key

1. $6 x^{2}+c$
2. $\frac{1}{3} x^{3}+c$
3. $\frac{1}{3} x^{3}+\frac{3}{2} x^{2}+2 x+c$
4. $\frac{1}{3} x^{3}+x+c$
5. $-\frac{8}{3} x^{-3}+c$
6. $\frac{1}{2} x^{2}+x+c$
7. $-\frac{5}{2} x^{2}+9 x+c$
8. $\frac{1}{6} x^{6}+\frac{3}{2} x^{2}+2 x+c$
9. $-6 x^{-3}+c$
10. $-\frac{5}{4} x^{-\frac{4}{5}}+c$
