Objective: Use the derivative of $f(x)$ to sketch the extrema of $f(x)$.
PROBLEM 1 : Do detailed graphing for $f(x)=x^{3}-3 x^{2}$.

Key

- PROBLEM 1 : Do detailed graphing for $f(x)=x^{3}-3 x^{2}$.

$f^{\prime}(x)=3 x^{2}-6 x$
$f^{\prime}(x)=0 @ x=0$ and $x=2$
$x=0$ is a maximum, because the derivative function is positive on the left and negative on the right.
$x=2$ is a minimum, because the derivative function is negative on the left and positive on the right.

Objective: Use the derivative of $f(x)$ to sketch the extrema of $f(x)$.
PROBLEM 2 : Do detailed graphing for $f(x)=x^{4}-4 x^{3}$.

- PROBLEM 2 : Do detailed graphing for $f(x)=x^{4}-4 x^{3}$.

$f^{\prime}(x)=4 x^{3}-12 x^{2}$
$f^{\prime}(x)=0$ @ $x=0$ and $x=3$
$x=0$ is a plateau, because the derivative function is negative on both sides of the root.
$x=3$ is a minimum, because the derivative function is negative on the left and positive on the right.

Objective: Use the derivative of $f(x)$ to sketch the extrema of $f(x)$.
PROBLEM 3 : Do detailed graphing for $f(x)=x^{3}(x-2)^{2}$.

- PROBLEM 3 : Do detailed graphing for $f(x)=x^{3}(x-2)^{2}$.
 $f^{\prime}(x)=5 x^{4}-16 x^{3}+12 x^{2}$ $f^{\prime}(x)=0 @ x=0$ and $x=6 / 5$ and $x=2$
$x=0$ is a plateau, because the derivative function is negative on both sides of the root.
$x=6 / 5$ is a maximum, because the derivative function is positive on the left and negative on the right.
$x=2$ is a minimum, because the derivative function is negative on the left and positive on the right.

Objective: Use the derivative of $f(x)$ to sketch the extrema of $f(x)$.

$$
f(x)=x^{3}-3 x^{2}-13 x+15
$$

$f^{\prime}(x)=3 x^{2}-6 x$
$f^{\prime}(x)=0$ @ $x \approx-1.309$ and $x \approx 3.309$
$x=-1.309$ is a maximum, because the derivative function is positive on the left and negative on the right.
$x=3.309$ is a minimum, because the derivative function is negative on the left and positive on the right.

