-10

Key

Objective: Use the derivative of f(x) to sketch the extrema of f(x). • *PROBLEM 1* : Do detailed graphing for $f(x) = x^3 - 3x^2$. May 24-1:55 PM Key Key • *PROBLEM1* : Do detailed graphing for $f(x) = x^3 - 3x^2$. $f'(x) = 3x^2 - 6x$ f'(x) f'(x) = 0 @ x = 0 and x = 2x = 0 is a maximum, because the derivative function is positive on

x = 2 is a minimum, because the derivative function is negative on the left and positive on the right.

Key

the left and negative on the right.

10

f'(x)

Key

 $f'(x) = 4x^3 - 12x^2$

f'(x) = 0 @ x = 0 and x = 3

x = 0 is a plateau, because the derivative function is negative on both sides of the root.

x = 3 is a minimum, because the derivative function is negative on the left and positive on the right.

Key

f'(x)

Key

Objective: Use the derivative of f(x) to sketch the extrema of f(x). • *PROBLEM 3* : Do detailed graphing for $f(x) = x^3 (x-2)^2$. May 24-1:55 PM Key Key • *PROBLEM 3* : Do detailed graphing for $f(x) = x^3 (x-2)^2$.

f'(x) = 5x⁴ - 16x³ + 12x²

f'(x) = 0 @ x = 0 and x = 6/5 and x = 2

 \mathbf{x} = 0 is a plateau, because the derivative function is negative on both sides of the root.

x = 6/5 is a maximum, because the derivative function is positive on the left and negative on the right.

x = 2 is a minimum, because the derivative function is negative on the left and positive on the right. Key

Objective: Use the derivative of f(x) to sketch the extrema of f(x). $f(x) = x^3 - 3x^2 - 13x + 15$ May 24-1:55 PM Key Key $f(x) = x^3 - 3x^2 - 13x + 15$ $f'(x) = 3x^2 - 6x$ f'(x) f'(x) = 0 @ x \approx -1.309 and x $_{\approx}$ 3.309 x = -1.309 is a maximum, because the derivative function is positive on the left and negative on the right.

10

Key

x = 3.309 is a minimum, because the derivative function is negative on the left and positive on the right.

Key