KEY

Determine the math model (equation) for the contextual problem, then solve the problem. All problems assume that the first year is when t = 0.

- 1. $A(t) = 100(0.85)^t$ $A(12) \approx 14.22\%$ assume intitial amount is 100, because asked for answer in percentage
- 3. $A(t) = 100(0.70)^t$ $A(7) \approx 8.235\%$ 1t = 4 days assume intitial amount is 100, because asked for answer in percentage
- 5. $A(t) = 100(0.50)^t$ $A(48) \approx 3.553 \text{ x } 10^{-13}\%$ 1t = 30 minutesassume intitial amount is 100, because asked for answer in percentage
- 7. $A(t) = 100(0.50)^t$ $A(8) \approx 0.3906\%$ 1t = 1 week assume intitial amount is 100, because asked for answer in percentage
- 9. $A(t) = 24,000(0.88)^t$ $A(12) \approx 5176

- . $A(t) = 100(0.92)^t$ $A(96) \approx 0.03339\%$ 1t = 15 minutes assume intitial amount is 100, because asked for answer in percentage
- 4. $A(t) = 100(0.95)^t$ $A(54) \approx 6.267\%$ 1t = 20 minutes assume intitial amount is 100, because asked for answer in percentage
- 6. $A(t) = 100(0.50)^t$ $A(10) \approx 0.09766\%$ 1t = 3 days assume intitial amount is 100, because asked for answer in percentage
- 8. $A(t) = 100(0.50)^t$ $A(36) \approx 1.455 \times 10^{-9}\%$ 1t = 2 hours assume intitial amount is 100, because asked for answer in percentage
- 10. $A(t) = 40,000(0.86)^t$ $A(10) \approx 8852